Gonadotropin-releasing hormone pulses are required to maintain activation of mitogen-activated protein kinase: role in stimulation of gonadotrope gene expression.
نویسندگان
چکیده
The present study examined the effect of alterations in GnRH signal pattern (pulsatile vs. continuous; pulse frequency) on mitogen-activated protein kinase (MAPK) activity and whether MAPK plays a role in regulating gonadotrope gene expression. Pituitary MAPK activity was measured by immunoblot, using a phospho-specific MAPK antibody, corrected to the amount of total MAPK per sample. In vivo studies were conducted in adult castrate testosterone-replaced male rats (to suppress endogenous GnRH). Animals received pulsatile or continuous GnRH (or BSA-saline for controls) via jugular cannulas. Initial studies revealed that pulsatile GnRH stimulated a dose-dependent rise in MAPK activity (30 ng, 2-fold increase; 100 ng, 4-fold; 300 ng, 8-fold) 4 min after the pulse. The effect of pulsatile vs. continuous GnRH was examined by administering 50-ng pulses (60-min interval) or a continuous infusion (25 ng/min) for 1, 2, 4, or 8 h. Pulsatile GnRH stimulated a 2- to 4-fold rise in MAPK activity (P < 0.05 vs. controls) that was maintained over the 8-h duration. In contrast, continuous GnRH only increased MAPK activity (2- to 3-fold; P < 0.05 vs. controls) for 2 h, with MAPK activity returning to baseline at later time points. The effect of GnRH pulse frequency on MAPK activation was determined by giving GnRH pulses (50 ng) at 30-, 60-, or 120-min intervals for 8 h. Maximal increases (3-fold vs. controls; P < 0.05) were seen after 120-min pulses, with faster (30- to 60-min interval) pulses stimulating 2-fold increases in MAPK activity (P < 0.05 vs. controls and 120-min GnRH pulse group). The role of MAPK activation on gonadotrope (alpha, LHbeta, FSHbeta, and GnRH receptor) gene expression was determined in vitro. Preliminary studies demonstrated that the MAPK inhibitor, PD-098059 (50 microM), completely blocked GnRH-induced increases in MAPK activity in adult male pituitary cells. Further studies revealed that PD-098059 blocked gonadotrope messenger RNA (mRNA) responses to pulsatile GnRH (100 pg/ml, 60-min interval, 24-h duration) in a selective manner, with alpha, FSHbeta, and GnRH receptor (but not LHbeta) mRNA responses being suppressed. These results show that a pulsatile GnRH signal is required to maintain MAPK activation for durations of longer than 2 h, and that slower frequency pulses are more effective. Further, MAPK plays a crucial role in alpha, FSHbeta, and GnRH receptor mRNA responses to pulsatile GnRH. Thus, divergent MAPK responses to alterations in GnRH signal pattern may be one mechanism involved in differential regulation of gonadotrope gene expression.
منابع مشابه
Extracellular Signal-Regulated Kinase (ERK) Activation and Mitogen-Activated Protein Kinase Phosphatase 1 Induction by Pulsatile Gonadotropin-Releasing Hormone in Pituitary Gonadotrophs
The frequency of gonadotropin-releasing hormone (GnRH) pulse secreted from the hypothalamus differently regulates the expressions of gonadotropin subunit genes, luteinizing hormone β (LHβ) and follicle-stimulating hormone β (FSHβ), in the pituitary gonadotrophs. FSHβ is preferentially stimulated at slower GnRH pulse frequencies, whereas LHβ is preferentially stimulated at more rapid pulse frequ...
متن کاملNegative Feedback Governs Gonadotrope Frequency-Decoding of Gonadotropin Releasing Hormone Pulse-Frequency
The synthesis of the gonadotropin subunits is directed by pulsatile gonadotropin-releasing hormone (GnRH) from the hypothalamus, with the frequency of GnRH pulses governing the differential expression of the common alpha-subunit, luteinizing hormone beta-subunit (LHbeta) and follicle-stimulating hormone beta-subunit (FSHbeta). Three mitogen-activated protein kinases, (MAPKs), ERK1/2, JNK and p3...
متن کاملDifferential gonadotropin-releasing hormone stimulation of rat luteinizing hormone subunit gene transcription by calcium influx and mitogen-activated protein kinase-signaling pathways.
Gonadotropin secretion and gene expression are differentially regulated by hypothalamic GnRH pulses by unknown mechanisms. GnRH stimulates calcium influx through L-type voltage-gated channels and activates phospholipase C, leading to increased protein kinase C (PKC) and mitogen-activated protein kinase activity. We found differential contributions of these pathways to GnRH-stimulated rat LH sub...
متن کاملReactive Oxygen Species Link Gonadotropin-Releasing Hormone Receptor Signaling Cascades in the Gonadotrope
Biological rhythms lie at the center of regulatory schemes that control many aspects of living systems. At the cellular level, meaningful responses to external stimuli depend on propagation and quenching of a signal to maintain vigilance for subsequent stimulation or changes that serve to shape and modulate the response. The hypothalamus-pituitary-gonad endocrine axis that controls reproductive...
متن کاملIntermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain
Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 139 7 شماره
صفحات -
تاریخ انتشار 1998